reseize logo;

Who is what? What is where? Where am I? Are you there?

You have hit the other collection, a newslog designed for the curious.

Thursday, March 09, 2006

Black Holes Or Dark Energy Stars?

Dark energy and dark matter, two of the greatest mysteries confronting physicists, may be two sides of the same coin. A new and as yet undiscovered kind of star could explain both phenomena and, in turn, remove black holes from the lexicon of cosmology.
The audacious idea comes from George Chapline, a physicist at Lawrence Livermore National Laboratory in California, and Nobel laureate Robert Laughlin of Stanford University and their colleagues. Last week at the 22nd Pacific Coast Gravity Meeting in Santa Barbara, California, Chapline suggested that the objects that till now have been thought of as black holes could in fact be dead stars that form as a result of an obscure quantum phenomenon. These stars could explain both dark energy and dark matter.
This radical suggestion would get round some fundamental problems posed by the existence of black holes. One such problem arises from the idea that once matter crosses a black hole's event horizon - the point beyond which not even light can escape - it will be destroyed by the space-time "singularity" at the centre of the black hole. Because information about the matter is lost forever, this conflicts with the laws of quantum mechanics, which state that information can never disappear from the universe.
Another problem is that light from an object falling into a black hole is stretched so dramatically by the immense gravity there that observers outside will see time freeze: the object will appear to sit at the event horizon for ever. This freezing of time also violates quantum mechanics. "People have been vaguely uncomfortable about these problems for a while, but they figured they'd get solved someday," says Chapline. "But that hasn't happened and I'm sure when historians look back, they'll wonder why people didn't question these contradictions." While looking for ways to avoid these physical paradoxes, Chapline and Laughlin found some answers in an unrelated phenomenon: the bizarre behaviour of superconducting crystals as they go through something called "quantum critical phase transition". During this transition, the spin of the electrons in the crystals is predicted to fluctuate wildly, but this prediction is not borne out by observation. Instead, the fluctuations appear to slow down, and even become still, as if time itself has slowed down. "That was when we had our epiphany," Chapline says. He and Laughlin realised that if a quantum critical phase transition happened on the surface of a star, it would slow down time and the surface would behave just like a black hole's event horizon. Quantum mechanics would not be violated because in this scenario time would never freeze entirely. "We start with effects actually seen in the lab, which I think gives it more credibility than black holes," says Chapline.
"Dark energy stars and black holes would have identical external geometries, so it will be very difficult to tell them apart," Lobo says. "All observations used as evidence for black holes - their gravitational pull on objects and the formation of accretion discs of matter around them - could also work as evidence for dark energy stars." Read more...

This was seized 4 u at New Scientist

Comments on "Black Holes Or Dark Energy Stars?"

 

post a comment

Links to "Black Holes Or Dark Energy Stars?"

Create a Link